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Abstract—Reliable transmission of fragile quantum information
requires one to efficiently select and utilize high-fidelity links
among multiple noisy quantum links. However, the fidelity, a
quality metric of quantum links, is unknown a priori. Uniformly
estimating the fidelity of all links can be expensive, especially
in networks with numerous links. To address this challenge, we
formulate the link selection and fidelity estimation problem as
a best arm identification problem and propose an algorithm
named LINKSELFIE. The algorithm efficiently identifies the
optimal link from a set of quantum links and provides an
accurate fidelity estimate of that link with low quantum resource
consumption. LINKSELFIE estimates link fidelity based on
the feedback of a vanilla network benchmarking subroutine,
and adaptively eliminates inferior links throughout the whole
fidelity estimation process. This elimination leverages a novel
confidence interval derived in this paper for the estimates from
the subroutine, which theoretically guarantees that LINKSELFIE
outputs the optimal link correctly with high confidence. We
also establish a provable upper bound of cost complexity for
LINKSELFIE. Moreover, we perform extensive simulations under
various scenarios to corroborate that LINKSELFIE outperforms
other existing methods in terms of both identifying the optimal
link and reducing quantum resource consumption.

Index Terms—Quantum Networks, Link Selection, Fidelity
Estimation

I. INTRODUCTION

Quantum networks are capable of transmitting quantum infor-
mation, represented by quantum bits or qubits, between multiple
quantum systems, facilitating groundbreaking applications
such as quantum cryptography [1], quantum key distribution
(QKD) [2], clock synchronisation [3], and quantum internet-
of-things (QIoT) [4]. The principles of quantum mechanics [5]
enable quantum networks to achieve functionalities that remain
unattainable with classical networks. However, harnessing the
potential of quantum networks also introduces new challenges
in network design and benchmarking. For instance, direct
transmission of qubits via physical quantum links, such as
optical fibers, in a large-scale quantum network is not feasi-
ble, as the probability of successful transmission diminishes
exponentially with the length of quantum links due to quantum
decoherence. Additionally, the no-cloning theorem [6] prevents
the replication of an arbitrary qubit for re-transmission or
amplification, adding further complexity to quantum network
design. Besides, quantum information is inherently fragile and
easily corrupted by noise, necessitating the benchmarking of
quantum networks to ensure their reliability and performance.

∗Zhuohua Li is the corresponding author. The work of John C.S. Lui was
supported in part by the RGC GRF 14207721.

A quantum network usually consists of quantum nodes
connected via quantum links [7]. Each quantum node can
function as a source, a destination, or a repeater, with the
ability to perform quantum operations and store qubits in its
quantum memory. Quantum links, often formed by optical fibers
or free-space optical links, can deliver qubits from one end to
the other. To realize long-distance qubit transmission, people
rely on quantum entanglement, a phenomenon where multiple
qubits are correlated and the state of individual qubits cannot be
described independently of the others. Quantum entanglement
is regarded as an important resource for transmitting quantum
information. Various experiments [8]–[10] have successfully
demonstrated the distribution of quantum entanglement. Once
two quantum nodes share entangled pairs, they can transmit
quantum information to each other by a process known as
quantum teleportation [11], regardless of their distance.

Reliable long-distance quantum information transmission
is a fundamental requirement for many quantum applications.
Many existing works [12]–[15] focus on long-distance quan-
tum entanglement routing protocols. These protocols aim to
establish end-to-end entanglement through quantum repeaters
via an operation called entanglement swapping [11], [16] in a
quantum network, with the goal of improving the network
throughput, enhancing robustness and serving more users.
However, due to the fragile nature of quantum information,
qubits are susceptible to decoherence via interactions with the
environment. For example, the generated entangled pairs may
not be perfectly entangled, and attenuation in physical links
and imperfect swapping operations may lead to corruption
during the establishment of long-distance entanglement. As
a result, the established end-to-end entanglement may not be
at the desired states and cannot be used for reliable quantum
information transmission. Usually, people use fidelity [5] to
quantify the quality of an entanglement link. The value of
fidelity is from 0 to 1, and it measures how well a quantum
channel preserves quantum information. Despite some recent
works [17]–[19] that take fidelity guarantee into consideration
when designing entanglement routing protocols, it remains
essential to explicitly verify the quality of entanglement links
before transmitting important quantum information.

The main objective of this work is to efficiently estimate the
fidelity of established entangled links. Our approach is based on
a method called network benchmarking [20], which measures
the average fidelity of quantum entanglement links. However,
network benchmarking is designed to measure a single quantum



link. In cases where there are multiple links with unknown
fidelities—a common scenario in quantum communications, one
needs to apply network benchmarking to each link individually,
leading to a rather high cost. In practice, one only needs to
select a few high-fidelity quantum links to transmit quantum
information. Precise fidelity estimation of links with low fidelity
is unnecessary where the corresponding benchmarking cost
is actually a waste and can be partially saved. Therefore, we
consider identifying and eliminating low-fidelity links early on
from a set of unknown links, so that we can efficiently obtain
accurate fidelity estimates for the desired high-quality links
and save quantum resources.

To tackle the challenging problem of link selection and
fidelity estimation, we formulate it as a best arm identification
problem, a classical sequential decision-making task in multi-
armed bandits [21]. Specifically, each arm corresponds to an
entangled link in a link set, and each arm is associated with an
unknown stochastic reward representing the link fidelity. The
network benchmarking method requires transmitting qubits
through a link multiple times to obtain a fidelity estimate,
which implies that one can only receive a reward or feedback
after pulling an arm multiple times. This poses a significant
challenge compared to the classical setting, where a single pull
of an arm yields an immediate reward sample. Our objective
is to identify the link with the highest fidelity from a link set
and get its fidelity estimate while consuming as few quantum
resources as possible. To achieve this, we design a phase-based
elimination algorithm named LINKSELFIE (Link Selection and
Fidelity Estimation). The elimination utilizes a novel confidence
interval derived in this paper for the results of the vanilla
network benchmarking subroutine. Based on the confidence
interval, we prove that our algorithm identifies the optimal link
with high confidence. We also introduce the notion of cost
complexity, which corresponds to quantum resources used by
the algorithm and provide a cost complexity upper bound of
our algorithm, which theoretically shows that our algorithm
is more efficient than the vanilla network benchmarking [20].
To evaluate our algorithm, we simulate a quantum network
where a pair of quantum nodes are connected via multiple
entanglement links associated with different levels of noise.
Our goal is to determine the link with the highest fidelity.
We conduct simulations with different noise models and link
fidelity distributions. The results corroborate that our algorithm
significantly reduces the total benchmarking cost compared
to the vanilla network benchmarking method and the naive
successive elimination method. Furthermore, our LINKSELFIE
algorithm operates without requiring any knowledge of the
network topology or the entanglement generation process.
Therefore it can be easily integrated into the current multi-
layer design of the quantum network protocol stack. This
adaptability allows it to seamlessly function with different
lower-level protocols, such as entanglement routing or network
diagnostic protocols.

We summarize our contributions as follows.
• We formulate the link selection and fidelity estimation

problem as a best arm identification problem, enabling
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Fig. 1. End-to-end entanglement establishment.

efficient decision-making with limited quantum resources.
• We propose a new algorithm named LINKSELFIE, which

utilizes the novel confidence interval for the network
benchmarking subroutine. We prove that our algorithm can
correctly output the optimal link and its accurate fidelity
estimate with high probability. Additionally, we provide a
provable cost complexity upper bound for the algorithm.

• We conduct extensive simulations, and the results show
that LINKSELFIE can identify optimal links with sig-
nificantly fewer quantum resources compared to other
methods while providing comparable fidelity estimation
accuracy.

The rest of the paper is organized as follows. We first present
some background information on quantum networks and the
network benchmarking method in Section II. In Section III,
We formulate the link selection and fidelity estimation problem
as a best arm identification problem. The detailed algorithm
design and its theoretical analysis are presented in Section IV.
Performance evaluations of our algorithm are conducted in
Section V, and related work is discussed in Section VI. Finally,
Section VII concludes the paper.

II. BACKGROUND

In this section, we review some prerequisites about quantum
networks and the network benchmarking method [20].

A. Quantum Networks

A quantum network is composed of quantum nodes intercon-
nected via quantum links. Each quantum node typically contains
a quantum processor for performing quantum operations and
measurements and has the ability to generate and store quantum
states in its limited quantum memory. Quantum links, which
can be optical fibers or free-space optical links, facilitate the
physical transmission of qubits between quantum nodes, such as
the transmission of photons through an optical fiber. However,
since the successful transmission rate decreases exponentially
with the length of quantum links, people have proposed
entanglement-based networks and use quantum entanglement
to enhance the transmission of quantum information.

1) End-to-End Entanglement: Quantum entanglement arises
when the shared state between multiple qubits cannot be
factored into a product of its individual qubit states. A
classical example is the maximally entangled EPR (Einstein-
Podolsky-Rosen) state |Ψ±⟩ = |01⟩±|10⟩√

2
. To overcome the

distance limitation of end-to-end entanglement between two
distant quantum nodes, quantum repeaters are positioned at



intermediate locations within the network. Given a source
node S and a destination node D sharing no direct physical
links, repeaters along a path of physical links connecting S
and D are responsible for generating entanglement (Fig. 1
(a)) with adjacent nodes and executing entanglement swapping
operations (Fig. 1 (b)) to establish an end-to-end entanglement
link between S and D (Fig. 1 (c)). After the entanglement is
successfully established, S can teleport an information qubit
to D by consuming that entanglement.

2) Quantum Noise and Average Fidelity: When establishing
end-to-end entanglement in quantum networks, various sources
of noise can potentially arise. For instance, losses in optical
fibers, imperfect hardware, and decoherence during qubit
storage. Such noise can lead to imperfect entanglement being
shared between the source and destination nodes, consequently
causing errors in quantum state transmission. Quantum noise
is often characterized by quantum channels [5]. Examples of
noise channels include the bit-flip channel, the depolarizing
channel, the dephasing channel, and so on. Specifically, the
depolarizing channel E(ρ) := pρ+ (1− p) I2 leaves the input
quantum state ρ unchanged with probability p and replaces it
with the maximally mixed state I

2 (the quantum equivalent of
a uniformly random classical bit) otherwise. The depolarizing
channel model is a useful tool for characterizing quantum
gates [22], [23] and quantum networks [20].

The average fidelity [24] of a quantum link asso-
ciated with noise channel E is defined by F (E) :=∫
dψTr[E(|ψ⟩ ⟨ψ|) |ψ⟩ ⟨ψ|], where the integral is taken uni-

formly over all pure quantum states |ψ⟩ and Tr denotes the trace
of a matrix. The average fidelity quantifies how well a quantum
link preserves information, where a fidelity of 1 corresponds
to a noiseless channel. For quantum links corresponding to the
depolarizing channel with parameter p, the average fidelity is
(1 + p)/2 [5]. For simplicity, we use the term fidelity to refer
to the average fidelity hereinafter.

In this work, we adopt the assumption of Markovian
noise [20], which implies that the noise is memoryless, and
entanglement links constructed via the same path always
correspond to the same quantum channel, irrespective of their
prior usage history. A pair of source and destination nodes
may be interconnected by multiple physical paths, along which
entanglement links can be established. Consequently, each
entanglement link between two nodes is implicitly associated
with a specific physical path within the network. In this paper,
we do not consider the low-level details of path discovery or
entanglement link generation but assume the set of distinct
entanglement links is known.

B. Network Benchmarking

The idea behind network benchmarking is that by channel
twirling process [22], which involves random applications of
Clifford operations [25], one can transform arbitrary quantum
channels into depolarizing channels with the same fidelity.
By accessing these depolarizing channels repeatedly, one can
estimate the average fidelity of them, which is equivalent to
that of the original channel. The parameters used for network
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Fig. 2. An example of a quantum network. We abstract away the irrelevant
network topology between S and D and only assume there are L entanglement
links.

benchmarking are M and T . M is called the bounce number
set, which contains a series of integers, and T represents the
repetition times for each bounce number m ∈M. A “bounce”
refers to the process in which node S applies a random Clifford
operation to the state and sends it to node D, which then does
the same and returns it to S. To estimate the average fidelity
of entanglement links between nodes S and D, the following
procedure will be implemented repeatedly for T times for each
m ∈M: (i) source node S generates an initial state; (ii) nodes
S and D “bounce” the state m times; (iii) source node S
applies a final operation and measures the state. The average
value of the T measurement results is denoted by bm, which
is often called the survival probability. The survival probability
is modeled by the exponential model bm = Ap2m, where A
is a constant accounting for quantum state preparation and
measurement errors, and p is the depolarizing parameter of
the twirled channel. Thus, by fitting the exponential model
bm = Ap2m to the data {M, {bm}m∈M}, one can estimate
the parameter p̂ and deduce the average fidelity (1 + p̂)/2.

In quantum networks, transmitting a qubit over a long
distance is costly, and each bounce consumes two entangled
links. Therefore, we use the number of bounces as a cost metric
for network benchmarking. In practice, it is essential not only
to precisely estimate the fidelity of the target links but also to
conserve the consumption of bounces.

III. MODEL

In this section, we first define the link selection and
fidelity estimation problem in quantum networks and provide
a motivating example. Then we formulate our problem as a
best arm identification problem in multi-armed bandits.

A. Problem Definition

Fig. 2 depicts a quantum network consisting of multiple
nodes, among which we select a source node S and a
destination node D. There are L ∈ N+ entanglement links
between S and D, denoted by L = {l1, . . . , lL}. Each of these
links is established along a distinct path connecting S and D.
Note that we do not consider the underlying network topology
or any specific mechanism for establishing these entanglement
links, as they are irrelevant to our purposes. Instead, we abstract
away these details and assume the existence of a network



protocol capable of constructing these links. The fidelities
of entanglement links can vary due to noise. We denote the
fidelity of link li ∈ L by fi. The optimal links are those with
the highest fidelity, i.e., l∗ ∈ argmaxli∈L fi.

To ensure high-quality quantum information transmission,
it is essential to select entanglement links with the highest
fidelity. Since the link fidelities are unknown beforehand, one
approach is to use the network benchmarking method described
in Section II-B to estimate the fidelity of each link respectively
to a specific accuracy ε > 0, i.e., |f̂i − fi| < ε at a given
confidence level, and then select the high-fidelity links to
transmit quantum information. However, this method means
that the benchmarking cost grows linearly with the number of
available links L. This indicates that the benchmarking cost
becomes prohibitive when the number of links is large.

Motivating Example. A qubit may be corrupted if transmit-
ted through noisy links, causing negative impacts on quantum
communications. Since links with low fidelity are unsuitable for
transmitting quantum information, it is unnecessary to spend
resources and time on accurately estimating these inferior
links. For instance, consider two links l1 and l2 with unknown
fidelities f1 = 0.9 and f2 = 0.7, respectively. When the
estimation accuracy reaches 0.05, with a high probability the
confidence intervals of the estimate fidelities no longer overlap,
enabling us to identify that link l2 is inferior to link l1. Then we
can discard l2, thus saving the benchmarking cost that would
have otherwise been spent on it, and focus on estimating the
fidelity of l1 more precisely. This motivates us to explore an
online learning approach to solve the link selection and fidelity
estimation problem.

B. Bandit Formulation

We now formulate the link selection and fidelity estimation
problem as a best arm identification problem. Let us consider
a stochastic multi-armed bandit whose arm set is denoted as
K := {1, . . . , L}. Each arm i ∈ K corresponds to a distinct
link in li ∈ L. The reward of each arm i ∈ K is associated with
a stochastic random variable Pi, whose mean is pi, satisfying
that fi = (pi + 1)/2 and pi ∈ (0, 1), i.e., there is a simple
linear relation between the link fidelities and reward means.
Without loss of generality, we assume that reward means are
sorted in descending order, i.e., p1 > p2 > · · · > pL, and arm
1 is the unique optimal arm, since one can always relabel the
link index. We denote the reward mean gaps as ∆i := p1 − pi
for suboptimal arm i ̸= 1, and for i = 1, we set ∆1 = ∆2.

In the stochastic multi-armed bandit, the decision maker
obtains samples drawn from the reward distribution of an arm
by pulling that arm. The empirical reward mean can then be
estimated by averaging multiple samples of the arm. However,
in the fidelity estimation of quantum entanglement links, the
empirical reward (fidelity estimate) is computed via regression
by the vanilla network benchmarking subroutine. This implies
that in our specific scenario, arms (links) can only be pulled
in batches. For simplicity, we regard the act of applying this
vanilla network benchmarking subroutine with the bounce
number set M and the repetition times T to link li once

equivalent to pulling arm i for T times. Besides, the quantum
resources consumed by the subroutine increase linearly in terms
of the repetition times T and the summation of all bounces in
M, i.e.,

∑
m∈Mm.

Our goal is to design an algorithm that correctly outputs
the optimal arm (link) 1 with the probability of at least 1−
δ (confidence parameter δ ∈ (0, 1)) with as small costs as
possible. We denote the total cost incurred by an algorithm A
as cost complexity, which can be expressed as follows,

Cost(A) :=
∑
i∈L

Ni,τ

∑
m∈M

m,

where Ni,s is the total number of pulls to link i ∈ L up to
time s, and τ is the stopping time at which the algorithm A
identifies the optimal arm.

IV. ALGORITHMS

In this section, we first elaborate on the design of our link
selection and fidelity estimation algorithm, which we refer to
as LINKSELFIE, and present the algorithmic details. We also
provide a theoretical analysis of its cost complexity.

A. Algorithm Design

Here, we propose an online algorithm (LINKSELFIE) based
on multi-armed bandits results. Unlike the classical bandit
setting where each arm can be flexibly pulled, links in our
problem can only be pulled in “batches” by the network
benchmarking subroutine. This inflexibility requires one to
assign multiple pulls for each link in a batched manner.
Therefore, we consider phase-based algorithms, where in each
phase we assign a fixed number of pulls to each link and
run the network benchmarking subroutines to estimate their
fidelities. One key challenge in the algorithm design is how
to appropriately allocate the number of pulls to different
phases, which shall (a) be based on the theoretical estimation
performance of this subroutine (see Lemma 1), and also (b) be
adaptive to the relative magnitudes of all links fidelities (e.g.,
reward gaps ∆i), which are unknown a priori.

To address this challenge, we propose a phase-based elim-
ination algorithm, presented in Algorithm 1. The algorithm
runs in phases denoted as s = 0, 1, 2, . . . and proceeds with a
link elimination mechanism. In the beginning, the algorithm
initializes a candidate set S as the full link set L. In each
phase, the algorithm executes the vanilla network benchmarking
subroutines for all remaining links in the candidate set S with
appropriate pull times Ts according to Lemma 1 (address (a)).
At the end of each phase, the algorithm eliminates the inferior
links identified in this phase, and, therefore, the algorithm does
not need to spend costs on these inferior links (adaptively) in
future phases (address (b)).

LINKSELFIE takes three input parameters: the link set L,
the pre-configured bounce length set M, and the confidence
parameter δ ∈ (0, 1). Ts is the cumulative number of pulls for
remaining links in S in phase s, i.e., the assigned number
of pulls for one link in phase s is Ts − Ts−1. We set
Ts = C22s log s(s+1)|S|

δ (Line 3), where C is a constant in



Lemma 1. Let p̂(s)i be the estimate fidelity of link i in phase
s and b

(s)
i,m be the empirical survival probability of link i

at the bounce number m after Ts trials. We integrate the
vanilla network benchmarking illustrated in Section II-B as a
subroutine here, i.e., Benchmarking (Line 5). The subroutine
Fitting (Line 7) fits the model bm = Ap2m to the input
data and returns p̂.

Specifically, at the beginning of each phase s, LINKSELFIE
uniformly pulls links in the candidate set that have not been
eliminated yet for Ts − Ts−1 times (i.e., run the network
benchmarking subroutine with the repetition times Ts − Ts−1

(Line 5)). Following this, it calculates b
(s)
i,m by weighted

averaging the newly obtained data bi,m and the data b(s−1)
i,m

from last phase (Line 6), and gets fidelity estimates p̂(s)i of
the remaining links (Line 7). Then it determines the maximum
estimate value p̂max (Line 8) and discards links i satisfying the
condition p̂

(s)
i + 2−s < p̂max − 2−s (Line 9). The condition

means that the upper confidence bound of link i is less than
the lower confidence bound of the link with the current highest
empirical fidelity, which implies that link i is a suboptimal
link with high confidence and we can eliminate link i. When
there is only one link left in the candidate set S , the algorithm
terminates and returns corresponding information.

Algorithm 1: LinkSelFiE: Link Selection & Fidelity Estimation

Input: path set L, confidence parameter δ, bounce
length set M

Initialization: candidate set S ← L, s← 0,
p̂
(0)
i ← 0, ∀i ∈ L, T0 = 0,
b
(0)
i,m = 0,∀i ∈ L,m ∈M

1 while |S| > 1 do
2 s← s+ 1 // s is the current phase.

3 Ts ← C · 22s log s(s+1)|S|
δ // C is a

constant.
4 for i ∈ S do
5 {bi,m}m∈M ←

Benchmarking(i,M, Ts − Ts−1)

6 b
(s)
i,m ←

bi,m(Ts−Ts−1)+b
(s−1)
i,m Ts−1

Ts
,∀m ∈M

7 p̂
(s)
i ← Fitting(M, {b(s)i,m}m∈M)

8 p̂max ← maxi∈S p̂
(s)
i

9 S ← S \ {i ∈ S : p̂
(s)
i + 2−s < p̂max − 2−s}

Output: the remaining link in S and p̂max

B. Theoretical Analysis

In this subsection, We analyze the cost complexity upper
bound of LINKSELFIE.

We begin by presenting the confidence interval for the
estimate of the vanilla network benchmarking method described
in Section II-B. Since the link fidelity is estimated from an
exponential regression using data points of each bounce length
m ∈M, rather than a simple average of independent random
samples, directly applying the conventional analysis tools used

in classical bandit literature, such as Hoeffding’s inequality,
fails to capture the correlations between data, and thus yields a
looser confidence interval. To address this issue, we examine the
properties of non-linear regression and derive a new confidence
interval in Lemma 1, which exploits information from all
data points of each bounce length, offering an advantage over
Hoeffding’s inequality.

Lemma 1 (Confidence Interval for Network Benchmarking).
Given the input parameters M and T ∈ N+, for a confidence
parameter δ ∈ (0, 1), to benchmark a link with the true depo-
larizing parameter p, the depolarizing parameter p̂ estimated
by the vanilla network benchmarking method satisfies,

Pr

[
|p̂− p| ⩽

√
C

T
log

1

δ

]
⩾ 1− δ,

where C is a constant related to the bounce length set M and
measurement noise, which is explicitly expressed in Appendix A.

We refer interested readers to Appendix A for its detailed
proof. Given Lemma 1, we have the following corollary.

Corollary 1. Given the confidence radius ε and the confidence
level 1−δ, the required repetition times for the vanilla network
benchmarking method should satisfy:

T = O
(
C

ε2
log

1

δ

)
.

From Corollary 1, we know how to set the repetition
times T to achieve certain accuracy when benchmarking one
entanglement link, which also implies the benchmarking cost.

Based on the above lemma, we derive a cost complexity
upper bound for our Algorithm 1. The proof details of
Theorem 1 is given in Appendix B.

Theorem 1 (Cost Complexity of Algorithm 1). Given a bounce
length set M and a confidence parameter δ ∈ (0, 1), the cost
complexity of Algorithm 1 is upper bounded as follows,

Cost(ALINKSELFIE) ⩽ O

(∑
i∈L

C

∆2
i

log

(
L

δ
log

4

∆i

))
·
∑

m∈M
m,

where L is the number of links and C is a universal constant.

Remark 1 (Modify Algorithm 1 to find an ε-optimal link). If we
modify the algorithm proceeding condition in Line 1 to be more
than one link remains in the candidate set and the estimation
accuracy does not reach ε, i.e., |S| > 1 and 2−s > ε, then
Algorithm 1 can output ε-optimal links (whose fidelity is greater
than the optimal one minus ε, i.e., pi > p1−ε). Identifying such
ε-optimal links is often practical in quantum networks [17].
With this modification, the cost complexity is upper bounded
as follows,

Cost(Amod) ⩽ O

(∑
i∈L

C

∆̃2
i

log

(
L

δ
log

4

∆̃i

))
·
∑

m∈M
m, (1)

where ∆̃i := max{∆i, ε}.



Remark 2 (Compare to vanilla network benchmarking (uniform
exploration)). If one applies the vanilla network benchmarking
method to uniformly estimate all links’ fidelities and stops
at the accuracy ε, then the cost complexity would be upper
bounded as follows,

Cost(Avanilla) ⩽ O
(
CL

ε2
log

L

δ

)
·
∑

m∈M
m.

The above bound is greater than (1) especially when there are
some links with large fidelity gaps ∆i. This corresponds to
that when ∆i’s are large, Algorithm 1 can eliminate these links
with high fidelity gaps in early phases, thereby conserving a
large number of quantum resources.

V. PERFORMANCE EVALUATION

In this section, we evaluate our algorithm LINKSELFIE. We
first elaborate on our experiment setups, including quantum
network structure, quantum noise model, baseline algorithms,
and the performance metrics we use. Then, we show our
evaluation results in terms of efficiency and precision.

A. Experiment Setup

We evaluate our algorithm by simulating a quantum network
with two nodes connected via several quantum entanglement
links. We employ various common noise models and assign
different levels of noise to the quantum links, and the objective
is to identify the optimal link using as few quantum resources
as possible. The entanglement links are generated by placing a
quantum source in the middle and bidirectionally distributing
entangled photon pairs through noisy quantum channels. We
apply four standard and widely used noise models to simulate
quantum noise [5]: (1) depolarizing noise model, (2) dephasing
noise model, (3) amplitude damping noise model, and (4) bit
flip noise model. For the sake of fair comparison among these
noise models, given a fidelity value, we convert it into the
corresponding noise parameters used to initialize each noise
model. All the quantum mechanisms are simulated by an off-
the-shelf quantum network simulation framework called Net-
Squid [26]. We compare our algorithm with two baselines, (1)
the vanilla network benchmarking algorithm (VanillaNB) and
(2) the successive elimination algorithm [27] (SuccElimNB).
VanillaNB uniformly benchmarks all the quantum links for
each bounce number with a fixed number of repetitions T ,
which we set to T = 200 in our experiments. SuccElimNB
invokes the network benchmarking subroutine with repetition
times T = 4 and treats the estimated fidelities as independent
random samples, then it makes optimistic decisions based on
upper confidence bounds derived via Hoefdding’s inequality. It
iteratively eliminates identified bad links as learning proceeds
until there is only one link left. All the experiments were done
on a Linux machine (kernel 6.1.38) with a 3.70 GHz Intel
Xeon E5-1630 v4 CPU and 16GB RAM.

B. Quantum Resources Consumption

First, we evaluate the quantum resource consumption of
these link selection algorithms. We fix a fidelity gap ∆ = 0.05

and simulate a two-node quantum network with L links,
which have fidelities 1, 1 − ∆, 1 − 2∆, . . . , 1 − (L − 1)∆,
respectively. Then we apply each link selection algorithm
to the network for different values of L and measure the
quantum resource consumption when the algorithms terminate.
Note that we use the total number of bounces as the metric
for quantum resource consumption and average the results
over 10 trials. Figure 3 shows the plots of quantum resource
consumption versus the number of links under different noise
models. Since VanillaNB spends the same amount of resources
for each link, its resource consumption is proportional to
the number of links in the network. This leads to excessive
resource waste when the network has many low-quality links.
On the other hand, both LINKSELFIE and SuccElimNB can
adaptively decide the resources spent by each link, and the
cost complexity grows slowly as L increases because it mainly
depends on the fidelity gap ∆. However, SuccElimNB only
relies on Hoefdding’s inequality to estimate the confidence
interval, while LINKSELFIE benefits from the much tighter
confidence intervals for the non-linear regression (Lemma 1).
Therefore, LINKSELFIE collects sufficient information and
eliminates the inferior arms more efficiently. The numerical
results demonstrate that LINKSELFIE costs significantly fewer
resources than the other two algorithms.
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Fig. 3. Bounces v.s. the number of links L using different noise models.

Next, we examine the effect of the fidelity gap on the
performance of the link selection algorithms. The fidelity gap
reflects the hardness of the best arm identification problem.
We fix the number of links L = 4 and vary the fidelity gap
∆, and we plot the quantum resource consumption versus the
fidelity gap under different noise models, averaged over 10
trials. As shown in Figure 4, the cost of VanillaNB is pre-
determined so it is not affected by the fidelity gap, while
LINKSELFIE and SuccElimNB can adaptively adjust the cost
according to the fidelity gap. Specifically, the smaller the



fidelity gap is, the harder to identify the optimal link, and
therefore more resources are needed. When the fidelity gap
is large, both LINKSELFIE and SuccElimNB can identify the
optimal link quickly. However, when the fidelity gap is small,
benefiting from Lemma 1, LINKSELFIE can obtain a much
tighter confidence interval and eliminate inferior links faster,
while SuccElimNB has to perform much more benchmarking
subroutines to achieve sufficient confidence.
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Fig. 4. Bounces v.s. gap using different noise models.

C. Fidelity Estimation Accuracy

Finally, we show the fidelity estimation accuracy of LINK-
SELFIE. We initialize a two-node network with L links, where
the fidelity of each link is generated as follows. We set
µ1 = 0.95 and µi = 0.85 for i = 2, . . . , L, then for each
link i, we sample its fidelity fi from a Gaussian distribution
with mean µi and variance 1/4. We apply each algorithm to the
network, get the estimated fidelity of the identified optimal link,
and calculate the relative error. Figure 5 plots the relative error
versus the number of links L, varying from 2 to 20, and the
results are averaged over 10 trials. As expected, LINKSELFIE
can not only identify the optimal link but also evaluate its
fidelity accurately. The relative error of LINKSELFIE is less
than 1%, which has no significant difference compared with
other algorithms. When the number of links is large, the relative
error tends to decrease because the algorithms need to spend
more bounces to distinguish the optimal link, resulting in a
more accurate estimation. In summary, LINKSELFIE identifies
the optimal link with significantly less quantum resource
consumption while providing comparable fidelity estimation
accuracy.

VI. RELATED WORK

Quantum networks have gained a lot of attention since their
introduction. Several real-world quantum networks have been
successfully tested outside the laboratory, such as SECOQC
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Fig. 5. Relative error v.s. the number of links L using different noise models.

Vienna QKD network [28], SwissQuantum QKP network
[29], Tokyo QKD network [30], and the space-to-ground
network [28], demonstrating the promising potential of the
upcoming quantum revolution. However, the susceptibility of
quantum information to noise necessitates the characterization
of quantum link noise for reliable quantum information
transmission. Ruan [31] proposes a protocol to estimate the
fidelity of entanglement states shared by remote nodes, but it
does not isolate quantum measurement errors from channel
noise. Helsen et al. [20] propose a network benchmarking
method, which is robust to state preparation and measurement
errors and can efficiently and accurately estimate the fidelity
of quantum links, regardless of how these quantum links are
formed. Recently, Andrade et al. [32] devise novel network
tomography protocols (NTP) to characterize the channel noise
in quantum networks, but it only considers bit-flip probabilities
of quantum star networks. Liu et al. [33] propose quantum
Border Gateway Protocol (BGP) to support entanglement
routing across multiple quantum Internet Service Providers
(qISPs) and integrate network benchmarking with the top-
K arm identification problem. However, their formulation
has more stringent assumptions than ours. Our online link
selection algorithm LINKSELFIE leverages the idea of online
learning and inherits the favorable properties of network
benchmarking. When selecting the optimal link from a set
of links, LINKSELFIE is much more efficient than network
benchmarking.

The multi-armed bandit (MAB) [34], [35] is a well-known
framework with numerous applications in various fields, such
as crowdsensing [36], opportunistic channel access [37], and
social networks [38]. In this literature, our model is related to
best arm identification with fixed confidence, aiming to identify
the optimal arm with high probability using as few samples as
possible. To solve this problem, algorithms like the successive
elimination algorithm [27], the lil’UCB algorithm [39], and



the track-and-stop strategy [40] are proposed and theoretically
analyzed. The problem has also been extended to the best-
K arms identification setting [41], [42], with the objective to
select top K arms with the highest means with high confidence.
Another variant of the best arm identification problem is to
identify the best arm in the fixed-budget scenario [21], [43]–
[45], which aims to minimize the probability of returning wrong
arms at the end of the time budget. We are the first to exploit the
MAB framework to solve the link selection and fidelity estimate
problem in quantum networks. Our algorithm deliberately
considers the property of the network benchmarking, with
the objective of identifying the optimal high-fidelity link from
a link set with high confidence and consuming as few resources
as possible. Unlike using the standard confidence interval based
on Hoeffding’s inequality to analyze the sample complexity
of algorithms in classical bandits, we deduce a confidence
interval for the network benchmarking subroutine and hereby
analyze the cost complexity upper bound of our algorithm from
a different perspective.

VII. CONCLUSION

In this paper, we consider the problem of link selection
and fidelity estimation in quantum networks. To address this
challenge, we formulate it as a best arm identification problem
and design an efficient algorithm named LINKSELFIE. We
derive a novel confidence interval of estimates for the vanilla
network benchmarking, a key subroutine within LINKSELFIE,
and prove that given a confidence parameter δ ∈ (0, 1), with the
probability of at least 1− δ, LINKSELFIE outputs the optimal
link and its accurate estimate. We also prove a cost complexity
upper bound for LINKSELFIE. To validate the performance of
LINKSELFIE, we simulate a quantum network with quantum
nodes connected via multiple entanglement links. Simulation
results show that LINKSELFIE outperforms other methods in
efficiently selecting the optimal link and accurately estimating
the fidelity while consuming fewer quantum resources across
various scenarios.

The authors have provided public access to their code and/or
data at https://zenodo.org/doi/10.5281/zenodo.10444443.

APPENDIX

A. Proof of Lemma 1
Since the estimate fidelity p̂ is obtained by non-linear

regression, we use the linear approximation method [46], [47]
to derive the confidence interval of p̂ for the vanilla network
benchmarking.

In the model bm = Ap2m, θ = (A, p)T are the parameters
we want to estimate. We denote their true values by θ∗ =
(A∗, p∗)T, and their least-square estimates by θ̂ = (Â, p̂)T.

In network benchmarking, the observed data (mi, bmi) for
i = 1, . . . , |M| are i.i.d. random samples drawn from the
non-linear model as follows:

bmi
= f(mi;θ) + εi = Ap2mi + εi,

where εi is the noise term, which follows the normal distribu-
tion N (0, σ2/T ). Parameter σ2 is the single-shot variance for

measuring the survival probability at sequence length m ∈M.
Since bmi is the average of T samples, the variance of its noise
εi is σ2/T .

The goal of non-linear least squares is to find the parameters
θ̂ that minimize the sum of squares of residual errors S(θ),
where

S(θ) =

|M|∑
i=1

(bmi − f(mi;θ))
2
.

We compute the confidence interval using the linear approx-
imation method.

Taking the Taylor expansion of function f(mi;θ) at point
θ∗ = (A∗, p∗)T, we have

f(mi;θ) ≈f(mi;θ
∗) +

∂f(mi;θ)

∂A

∣∣∣∣
θ∗

(A−A∗)

+
∂f(mi;θ)

∂p

∣∣∣∣
θ∗

(p− p∗)

=A∗ (p∗)
2mi + (p∗)2mi(A−A∗)

+ 2miA
∗ (p∗)

2mi−1
(p− p∗) ,

(2)

where the ≈ hides a small o(1) quantity.
Hence,

S(θ) =

|M|∑
i=1

(bmi
− f(mi;θ))

2

(a)
≈

|M|∑
i=1

(
bmi −A∗ (p∗)

2mi − (p∗)
2mi (A−A∗)

−2miA
∗ (p∗)

2mi−1
(p− p∗)

)2
=

|M|∑
i=1

(
εi − (θ − θ∗)TFi

)2
,

(3)

where (a) is by substituting f(mi;θ) with its Taylor expansion

(2) above, and Fi =
(
(p∗)2mi , 2miA

∗ (p∗)
2mi−1

)T
and ε =

(ε1, . . . , ε|M|)
T.

After the linear approximation, we can minimize (3) by the
linear least squares and get:

θ − θ∗ =

|M|∑
i=1

FiF
T
i

−1 |M|∑
i=1

εiFi (4)

Equation (4) shows that θ − θ∗ is a linear combination of
εi ∼ N (0, σ2/T ). By the definition of multivariate normal
distribution, we have

θ̂ ∼ N2

(
θ∗,

σ2

T
Q

)
,

where Q =
(∑|M|

i=1 FiF
T
i

)−1

.
Since we only care about the estimation of p∗, by the property

of multivariate normal distribution, we can extract the second
component of θ̂ = (Â, p̂)T, which has the distribution:

p̂ ∼ N
(
p∗,

σ2

T
Q2,2

)
.

https://zenodo.org/doi/10.5281/zenodo.10444443


where Q2,2 is the entry of Q in the second row and the second
column.

Although Q2,2 depends on the true values A∗ and p∗, which
are unknown to us, the inherent range of A∗ and p∗ [22]
shows that Q2,2 is bounded. We can approximate Fi using

F̂i =
(
p̂2mi , 2miÂp̂

2mi−1
)T

and so Q̂ =
(∑|M|

i=1 F̂iF̂
T
i

)−1

.
We approximate the sample variance s2 as follows,

s2 =
S(θ̂)

|M| − 2
≈ |M|σ2

(|M| − 2)T
.

Finally, we get the asymptotic confidence interval of p∗ by
the property of t-distribution as follows,

Pr

[
|p̂− p∗| > 1√

T
σ

√
|M|
|M| − 2

· Q̂2,2 · t|M|−2,1−α/2

]
⩽ α,

where tk,p is the p-th quantiles of the t-distribution with k
degrees of freedom. That is, the confidence interval depends
on O( 1√

T
).

Let

C = σ2 |M|
|M| − 2

· Q̂2,2 · t2|M|−2,1−α/2

for a fixed value of α. By applying the powering lemma [48],
i.e., repeating the algorithm O(log

(
1
δ

)
) times and taking the

median, the vanilla network benchmarking method can return
p̂ such that

Pr

[
|p̂− p∗| >

√
C

T
log

1

δ

]
⩽ δ,

Then we can conclude Lemma 1.

B. Proof of Theorem 1

Proof. We now prove Theorem 1 by showing that, with
probability of at least 1− δ, (a) the optimal link will always
remain in the candidate set S, and (b) the number of pulls
required for a suboptimal link i to be removed from S is
bounded by O(C∆−2

i log (L/δ log (4∆−1
i ))).

First, we prove (a): Note that link i will be eliminated from
S only if there exists some j ̸= i and some s > 0 such that

p̂
(s)
i + 2−s < p̂

(s)
j − 2−s. (5)

We denote the event {∀s > 0,∀i ∈ S, |p̂(s)i − pi| ⩽ 2−s} by
E . On the event E , pi ∈ [p̂

(s)
i − 2−s, p̂

(s)
i + 2−s] holds for any

link i ∈ S in any stage s > 0. and thus, p̂(s)i + 2−s ⩾ pi and
p̂
(s)
j − 2−s ⩽ pj . Plugging them into (5), we have

pi ⩽ p̂
(s)
i + 2−s < p̂

(s)
j − 2−s ⩽ pj ,

showing that pi < pj , i.e., i is not an optimal link.
Therefore, if the event E holds, Algorithm 1 never makes

mistakes and must output the correct optimal link in the end.
It is sufficient to show that the probability that the event E
happens is no less than 1− δ.

Since

Pr
(
Ē
)
⩽

∞∑
s=1

∑
i∈S

Pr
(
|p̂(s)i − pi| > 2−s

)
(6)

⩽
∞∑
s=1

∑
i∈S

δ

|S|s(s+ 1)
(7)

< δ, (8)

where (6) holds by the union bound, (7) is because of Lemma 1,
and (8) is from

∑∞
s=1

1
s(s+1) < 1, i.e., Pr(E) ⩾ 1− δ, we can

conclude (a).
Then we prove (b): We consider the cost complexity when
E holds. We show that a suboptimal link i must have been
eliminated when ∆i ⩽ 4 · 2−s; otherwise, it results in a
contradiction. Suppose ∆i > 4·2−s and link i is not eliminated
in phase s, implying that p̂(s)i + 2−s ⩾ p̂max − 2−s. Then,

pi+2·2−s ⩾ p̂
(s)
i +2−s ⩾ p̂max−2−s ⩾ p̂

(s)
1 −2−s ⩾ p1−2·2−s,

holds, i.e., ∆i ⩽ 4 · 2−s, which contradicts with ∆i > 4 · 2−s.
Denote the phase in which link i is eliminated by phase si.

We have ∆i ⩽ 4 · 2−si . Therefore, the total number of pulls
of link i is upper bounded as follows,

Ni,si = C22si log
si(si + 1)|S|

δ
(9)

⩽ C22si log
si(si + 1)L

δ
(10)

⩽ C22si log

(
L

δ
log

4

∆i
(log

4

∆i
+ 1)

)
(11)

= O
(
C

∆2
i

log

(
L

δ
log

4

∆i

))
, (12)

where (9) is from the definition, (10) is because of |S| ⩽ L,
(11) and (12) are because of ∆i ⩽ 4 · 2−si . Then we have (b).

Summing over the number of pulls of all links and multi-
plying it with the cost per pull, we have:

Cost(ALINKSELFIE) ⩽ O

(∑
i∈L

C

∆2
i

log

(
L

δ
log

4

∆i

))
·
∑

m∈M
m,

which concludes the proof.
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